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ABSTRACT

Two polynomials in *[z]

in n
(1) A(z)- kjaz , 8(z) )bk

k 0 k 0 k k'

are said to be apolar, provided that the equation

~ ( 1 )k"o-. b - 0
n k n -(-I) (k)a k bn-k 0

0- '" "-"

holds. This definition was given at the tn of the century by J.H. Grace who
established in (1] the folovin . -:

Theorem of mace. .;Let the polynomials (I)Abe apolar. AIf the circular
region C; contains all the zeros of A(z), then C must contain at least %

"one of the zeros of B(z). 0-,.

By a circular region .- e-an either the closed interior of a circle, or
the closed exterior of a circle, or a closed half-plane.

41.we give..a proof of Grace's theorem by mathematical induction on the
degree n.
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SXIIFICANCZ AND ZXPANATION

Two polynomials in C(Z)

(1) A(z) - k~az,3z )b z

are said to be apolar. provided that the equation

k n

holds. This definition was given at the turn of the century by J.H. Grace who
established in [1] the following j

77.

Theorms of Gesace. Let the polynomsials (1) be apolar. If the circular
region C contains all the zeros of A(z), then C must contain at least
one of the zeros of 3(Z).

By a circular region we mean either the closed interior of a circle, or
the closed exterior of a circle, or a closed half-plane.

Here we give a proof of Grace's theorem by mathematical induction on the
degree n.

The references [3] and [21 give numerous applications of Grace's
theorem. For n -2 the apolarity equation (1.2) is equivalent to the
equation

02C ~2 : 1- ~2
2 1 II:

hence the pair of points (01F$2) divides (al ,Ci2) in harmonic ratio.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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UNIVERSITY OF WICONSIN-NADISON
MATNEMATICS RESEARCH CENTER

A ]PROOF OF GRACE'S THEOREM BY INDUTION

A.W. Goodman and I.J. Schoenberg

1. Introduction. At the turn of the century 3.H. Grace [1] introduced the following

Definition 1. Two polynomials

(1.1) Anz)a + n+ ."n
A~z C +()az Z** ()a z +...+ a Z

and n n • n

(1.2) B(1) - b (n )b z +. (n)bk +---+ b z

are said to be apolar provided that their coefficients satisfy the apolarity condition

(1.3) aOb n 1 )a b +...+ C-I)k k(n)a b +--+ (-I) .a b 0.n IInI k k n-k no 0

The coefficients of the polynomials may be real or complex. If arOO (rJO) and

a = 0 for v - r+1,r+2,...,n, then we regard z = - as an (n-r)-fold zero of

A(z). If all the coefficients of A(z) are zero, then A() is not regarded as a

polynomial.

Grace discovered the following remarkable

beaors of Qwe.. Let the polynomials (1.1) and (1.2) be apolar. Let ,2 .... Cn

be the zeros of A(z) and 81,8 2 ,...,a nB be the zeros of B(z). If the circular region

C contains all of the m ,then C must contain at least one of the BV . , ,

By a circular region we mean either the closed interior of a circle, or the closed

exterior of a circle, or a closed half-plane.

In [3] G. Szeg5 gave a proof of Grace's theorem freed of the invariant-theoretic

concepts used by Grace in [I], and he also gave a large number of applications. In the

present note we establish Grace's theorem by induction on n. Our proof is different from

those given earlier.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. The invariance of &polarity by M bius transformations.

By the transform of A(z) under the M~bius transformation

(2.1) z 7w (ad-bc 0 0)

we mean the polynomial

nn
A'(w) E cvd() (a,+b)v(c+d) ()awv

cwd V I v0V-0 V.0,

*J

For example if A(Z) S 1, then A (w) (cw+d)n and the n-fold zero of A(z) at z =

becomes an n-fold zero of A(z) at w = -d/c if c A 0. WK

Lemma 1. Let A(z) and B(z) be apolar polynomials. If the M4bius transormation-.,- ".

(2.1) changes the polynomials (1.1) and (1.2) into

I n * V I n~b

(2.2) A (w) n )a vV and B (w) = ()bv v,
v=0 v0

then the polynomials (2.2) are also apolar.

Proof. It sufficies to prove Lemma 1 for each of the three special transformations

(2.3) (i) z = w + h, (ii) z kw, (iii) z =
w

n wV

(i) A* w) = A ( + h) n ( Cv) (.h
V.0

* and therefore

n n (n-v)l (V) v
A*(w) V ni A (~

=O

Similarly
B*(w) n n (n-v)i CV) V

BAv(V))B (h)wvV n1 5,
v.0

-2-
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The apolarity equation for these polynomials is

n )v n (n- A (h -v ( ) -
f(h) 0n (-1) (V nI A (hnl B(nvh) 0

or

n

(2.4) nI f(h) = : (-1)VA ()(h)Bn (v)(h) = 0.

V-0

The apolarity of A(z) and B(z) gives f(O) - 0, and we must show that f(h) - 0 for

all h. This will follow as soon as we show that for all h -,-

(2.5) f'(h) - 0. e-'.e

From (2.4) we find that

ni f'(h) - )vA(v+)(h)B( (h) + (-I)A (h)D(n'v+)(h).

V-0 V-0

Here the vth term (v-n) in the first sum cancels with the (v+1)-st term in the

second term, and hence

n (n+1)(n)
ni f'(h) - (-1) A (h)B(h) + A(h)B (n+)(h)

which is evidently zero because A(z) and I(z) are nth degree polynomials. This proves .'-

(2.5) rnd therefore (2.4) for all h.

(ii) For the second transformation in (2.3) we have
A * ,.)e k n" "f l '

(w) 0 + ( )aIkw..+ a Ow

and

B (w) - bn0 + I )bIkw bn

which are evidently apolar by (1.3).

(iii) Finally, setting z = 1/w gives

A* (w) an + (n 1)e . +-.+ a0w-

and

-3-
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B W b n+ )b n -1w +b aft b1 f1 w  0

and these are also apolar by (1.3). *

Lemma 2. If a is a zero of the polynomial A(W), then its transform 0 under

(2.1) is a zero of the transformed polynomial A v). W.

If neither % nor B is -, then a - (aB+b)/(cB+d) and

(2.6) A (B) - (cB+d)nA tObh - (cS+d)nA(a) - 0.

If a - * is an r-fold zero of A(z), then B - -4/c is clearly an r-fold zero of

A (z). If a - a/c is an r-fold zero of A(s), then the decomposition used in the

proof of Lema 1 shows that B " is an r-fold zero of A (2). •

It follows from Lume 2 that if a circular domain C contains all the zeros of

A(z) then the transformed domain under (2.1) will contain all the zeros of A (z).

3. Proof of Grace's Theorem. We use induction on n. For n - 1, the apolarity

condition (1.3) gives a0b1 - alb 0 - 0 so a1 . 01 and the theorem is obviously true.

Next we assume the theorem is true for index n-1 and wish to prove that it is also

true for index n. Here we use the method of contradiction. We shall assume that for '-.- :"+

some circular domain C and some pair of apolar polynomials A(z) and B()"

(3.1) av f C, v - 1,2,...,n, and Bv J C, v - 1,2,...,n.

By a transformation we may assume that 0 - -, without loss of generality (use ,

Lemmas I and 2). It follows that in (1.2) ° """-

(3.2) bn - 0.

The second assumption in (3.1) tells us that B n C and hence C is bounded. 0-"

Therefore all a are finite and hence an 50 0. The points 61,62,..,n-l (finite or .

not) are the zeros of

(3.3) Blz) - b + (n )b S ... + ()bk +...+ n( )b n-1

0 1 1 k k n-1 n-1

which we now regard as a polynomial of degree n-1. Now consider the polynomial

. n-1 n-. k n-1(3.4) -AW)a +( )az+...+ )a z +:- a:z
n 1 1 2 Ic k+1 n

having the zeros 'y1 ,y2 ,...,¥fl. These zeros are all finite because a 0 0.

We claim the two polynomials (3.3) and 3.4) are apolar as polynomials of degree

-4-

i," .1' '°- .

,-'.. -.. - o" +"..- ." .+ o. - . . .- o o'. . . % . .. ".". %. -. . . ." - .. -. ..o- . ' . . . . .'. '. .

." . .+ .. - . • • . • . ' . ." . ". . - ' ." . .,.. ." • . .. . ". ....-.. ... . .". . '. + +. . . . " ." , ,,. .'-" ". . .". . . " " "



n-.To confirm this we rewrite (3.3) in the usual form

=b C* bz ** k)k 4.n- I n-, ' k+ b' zn-1.

(3.5)~ ~ ~ )~)-b +(~ )b.)k n

(3.6 nk kI k 0 ,1,2,...n-1.

But then our original apolarity condition (1.3)

n-I k
S (-I) C)bka =0
k.Ok kn-k

*(since bn 0 by (3.2)) becomes

n-I k-
S (-I) C )bk an 0.

This shows that the polynomials (3.4) and (3.5) are apolar.

we now appeal to the Gauss-Lucas Theorem which states that all the zeros

ey ~ are in the convex hull of the zeros OLIL2 .... an of A(z). By our first

assumption (3.1) we conclude that y, VC C, for v On,,..n1 the other hand

B c for v - 1,2,.. .,n-1. This contradicts Grace's Theorem for index n-1. Hence by

the principle of mathematical induction Grace's Theorem is true for every positive

integer n. 8

The reader is referred to Szeg~u work (3] and the book by Harden (2] for many

* interesting applications of Grace's Theorem.

-5-
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20. ABSTRACT (Continued)

n

k (l()akb -= 0
k-a

holds. This definition was given at the turn of the century by J.H. Grace who :~ .~
established in f 1] the following . *..,

Theorem of Grace. Let the polynomials (1) be apolar. If the circular
region C contains all the zeros of A(z), then C must contain at least
one of the zeros of B(z).

By a circular region we mean either the closed interior of a circle, or
the closed exterior of a circle, or a closed half-plane.

Here we give a proof of Grace's theorem by mathematical induction on the
degree n.
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